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Abstract 17 

Determining the large-scale Rubisco carboxylation maximum rate (Vc,max25) in relation to leaf age is 18 

crucial for assessing the photosynthetic capacity of canopy leaves in global forests. Young leaves (≤180 days) 19 

with higher Vc,max25 compared with old leaves (>180 days) largely control the seasonality of leaf 20 

photosynthetic capacity in tropical and subtropical evergreen broadleaved forests (TEFs). Nevertheless, it 21 

has not yet been adequately quantified across TEFs. In this study, we propose an innovative method that 22 

leverages neighborhood pixel analysis with a nonlinear least squares fitting approach to derive the Vc,max25 of 23 

the young leaves at 0.25° spatial resolution from satellite-based solar-induced chlorophyll fluorescence (SIF) 24 

products spanning from 2001 to 2018, which were reconstructed using both the TROPOMI (Tropospheric 25 

Monitoring Instrument) SIF and MODIS reflectance data (RTSIF). Validations against in situ observations 26 

show that the newly developed Vc,max25 products accurately capture the seasonality of the young leaf area in 27 

South America and subtropical Asia, with correlation coefficients equal to 0.837, 0.661, and 0.952, 28 

respectively. Additionally, the Vc,max25 of the young leaves simulated from the RTSIF is effectively correlated 29 

(R>0.512) with that dissolved from the gridded gross primary production (GOSIF-derived GPP). 30 

Furthermore, the gridded young leaf Vc,max25 dataset effectively detects the green-up region during the dry 31 

seasons in the tropics, where the average annual precipitation exceeds 2000 mm/year. The clustering patterns 32 

of the young leaf Vc,max25 also effectively match those clustered by climatic variables across the TEFs. Overall, 33 

the newly developed Vc,max25 product is the first satellite-based dataset for addressing the Vc,max25 of 34 

photosynthetically efficient young leaves and can provide useful information for modeling the large-scale 35 

photosynthesis dynamics and thus carbon cycle across the TEFs. Herein, we provide the time series of Vc,max25 36 

derived from RTSIF GPP as the main dataset and GOSIF- and FLUXCOM- derived as supplementary 37 

datasets. These Vc,max25 products are available at https://doi.org/10.5281/zenodo.14807414 (Yang et al., 2025). 38 

 39 

Keywords: maximum rate of carboxylation (Vc,max25), leaf age, photosynthesis, tropical and subtropical forest. 40 

 41 

1. Introduction 42 

The maximum carboxylation rate (Vc,max) is the key leaf attribute that strongly influences the seasonal 43 
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variations in canopy photosynthesis in tropical and subtropical evergreen broadleaved forests (TEFs; Chen 44 

et al., 2022; Wu et al., 2018). This is because Vc,max is highly correlated with nitrogen-related plant functional 45 

traits (Dechant et al., 2017; Lu et al., 2020), such as leaf nitrogen and chlorophyll content (Lu et al., 2020). 46 

However, such nitrogen contents differ greatly at the large scale because the assignment of leaf nitrogen 47 

varies in response to many other biotic and abiotic factors (Quebbeman and Ramirez, 2016), such as leaf 48 

lifespan (Onoda et al., 2017), leaf temperature (Verheijen et al., 2013), light intensity (Hikosaka, 2014) and 49 

species (Evans, 1989). While the large-scale leaf nitrogen is difficult to retrieve from remotely sensed data 50 

(Knyazikhin et al., 2013), currently, mapping the regional or global scale Vc,max is still challenging. 51 

Vc,max at 25℃ (hereafter denoted as Vc,max25) is used as a benchmark in most ecosystem modeling for 52 

simulating various Vc,max values at different temperatures. For instance, the Farquhar-von Caemmerer-Berry 53 

(FvCB) leaf photosynthetic model has been widely adopted for simulating plant photosynthesis across 54 

different ecosystems (Farquhar et al., 1980; Sun et al., 2015), in which Vc,max25 is an essential parameter in 55 

the FvCB model for determining leaf photosynthetic capacity. However, Vc,max25 also varies greatly across 56 

different tree species and may even show a 2-3-fold difference across the same species (Orndahl et al., 2022). 57 

Researches on this issue at the continental scale remain limited and inconclusive, mainly due to the diverse 58 

seasonal constraints imposed by the water availability and light; these factors affect leaf scour and defoliation 59 

across different climatic zones (Sulc et al., 2017; Kiehn et al., 2013). Recently, two independent satellite 60 

remote sensing approaches have been developed with the objective of estimating Vc,max25 on a global scale. 61 

The first satellite-based approach to deriving Vc,max25 is via leaf chlorophyll content (LCC) (Luo et al., 2019; 62 

Lu et al., 2020). Chlorophyll harvests light and provides energy for reactions in the Calvin-Benson-Bassham 63 

(CBB) cycle of photosynthesis (Luo et al., 2019). Thus, Vc,max25 is coordinated with LCC as plants optimize 64 

their photosynthetic nitrogen resources (Croft et al., 2020; Xu et al., 2022a; 2022b). The retrieval of Vc,max25 65 

from LCC offers the means of reliable and accurate Vc,max25 estimation over different spatiotemporal scales. 66 

The second satellite-based approach is to deriving Vc,max25 is via solar-induced chlorophyll fluorescence (SIF) 67 

(Mohammed et al., 2019). This is because SIF can serve as a good proxy for mapping gross primary 68 

productivity (GPP) at the global scale (Frankenberg et al., 2011; Mohammed et al., 2019). To date, a time 69 

series of daily Vc,max25 maps has been derived using SIF data obtained from the Global Ozone Monitoring 70 

Experiment-2 (GOME-2) sensor, spanning the period from 2007 to 2017, with a resolution of 36 km (He et 71 

al., 2019). However, there are both strengths and weaknesses of the Vc,max25 products derived from LCC and 72 

SIF. LCCs have been reliably derived from multispectral satellite data at much higher resolution in space and 73 

time than SIFs (Chen et al., 2022). Nevertheless, the derivation of LCC from remote sensing data is 74 

susceptible to errors in the vegetation structural parameters employed in the derivation (Luo et al., 2019). 75 

The conversion of LCC to Vc,max25 is contingent upon empirical relationships for disparate PFTs, which are 76 

subject to considerable uncertainties (Chou et al., 2020; Croft et al., 2017; Houborg et al., 2013; 2015). In 77 

contrast, SIF is directly related to vegetation photosynthetic rates, but the spatial and temporal resolution of 78 

most satellite SIF observations is relatively low (Liu et al., 2024; Chen et al., 2022). One most recent study 79 

demonstrated that TROPOMI SIF data with high spatial and temporal resolutions exhibit a linear relationship 80 

with GPP, containing robust signals for Vc,max25 (Chen et al., 2022). Thus TROPOMI SIF data have been 81 

extensively employed for simulating plant photosynthesis across diverse ecosystems (Yang et al., 2023).  82 

TEFs constitute 40-50% of the carbon sinks in global forest ecosystems and thus play a central role in 83 

the global carbon cycle (Yang et al., 2023; Lu et al., 2021). Despite the perennial nature of the TEFs canopy, 84 

recent research indicates that photosynthesis in these forests exhibits significant seasonal fluctuations (Wu et 85 

al., 2016). This seasonality in canopy photosynthesis across TEFs primarily stems from the seasonal 86 

variability of canopy leaf age structures (Chen et al., 2021; 2022), which are mainly driven by climatic 87 
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seasonality (Li et al., 2021; Yang et al., 2021). Recent studies have demonstrated that young leaves (≤180 88 

days) often show higher Vc,max25 compared with old leaves (>180 days) and thus largely control the seasonality 89 

of leaf photosynthetic capacity in TEFs (Locke and Ort, 2014; Wu et al., 2016). Thus, mapping the Vc,max25 90 

seasonality of young leaves becomes more important for modeling the tropical photosynthesis seasonality at 91 

the continental scale. However, satellite-based studies still have challenges in accurately differentiating 92 

Vc,max25 across the leaf age groups in TEFs due to the intricate mechanism of climate influences on the leaf 93 

age in TEFs (Jensen et al., 2015; Song et al., 2020). This issue thus complicates the accurate depiction of 94 

Vc,max25 seasonality related to young leaf age. While Earth system models (ESMs) frequently struggle to 95 

precisely replicate the seasonal variations in Vc,max25 among the various leaf age categories (Atkin et al., 2014; 96 

Ali et al., 2016). The most difficult issue still stems from the insufficiently understood mechanisms that 97 

connect the seasonal changes in water and light availability to the patterns of leaf emergence and shedding. 98 

To solve above-mentioned gaps in mapping the Vc,max25 of young leaves , here we categorized the canopy 99 

foliage of TEFs into two distinct leaf age groups: young (<180 days) and old (>180 days) leaves. Then, we 100 

proposed an innovative neighbor-based approach to determine the maximum carboxylation rate (Vc,max25) for 101 

the young leaf cohort by setting a constant Vc,max25 for the old leaf cohort (Yang et al., 2023), as Vc,max25 of 102 

the old leaf cohort varies very small (Chen et al.,2019; Albert et al., 2018). This research has three specific 103 

objectives: (1) to create a global gridded dataset that maps the seasonal variability in young leaf Vc,max25 across 104 

entire TEFs from 2001 to 2018; (2) to evaluate the accuracy of these datasets against ground-based 105 

measurements and dissolved Vc,max25 data from the GOSIF-derived GPP datasets; and (3) to analyze the 106 

seasonal fluctuations in the young leaf Vc,max25 across the entire TEFs. This newly developed Vc,max25 dataset 107 

can help to provides new insights into tropical and subtropical phenology by detailing the seasonality of 108 

young leave Vc,max25. This valuable information can also aid in the refinement and improvement of the tropical 109 

phenological models used in the ESMs. 110 

 111 

2. Materials and methods 112 

2.1 Study area 113 

The studied TEFs were identified by selecting pixels marked as EBF (Evergreen Broadleaf Forest; Sulla-114 

Menashe et al., 2018) on MODIS MCD12C1 land cover maps at 0.05° spatial resolution (see Fig. 1). TEFs 115 

in South America are the largest tropical rainforests in the world and are mainly located at 18°N ~30°S and 116 

40~90°W, followed by TEFs in tropical Africa (10°N~10°S, 10°W~30°E). TEFs in tropical Asia are mainly 117 

located in the Malay Archipelago, Asian Peninsula and northern Australia (30°N~20°S, 70~150°E). 118 

 119 

Figure 1. Tropical and subtropical broadleaved evergreen forests (TEFs) and in situ observation sites. The 120 

studied TEFs is determined as those labeled as evergreen broadleaf forest (EBF) from the MODIS land cover 121 

maps at a 0.05° spatial resolution. The red dots are in situ observation sites of Vc,max25. 122 

https://doi.org/10.5194/essd-2025-64
Preprint. Discussion started: 18 February 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

 123 

2.2 Data sources for mapping the young leaves Vc,max25  124 

The continental scale GPP (referred to as RTSIF-derived GPP) at a resolution of 0.125° and spanning 125 

from 2001 to 2018 was derived from TROPOMI (Tropospheric Monitoring Instrument) SIF data, according 126 

to the relationships between the SIF and GPP delineated by Chen et al. (2022), which used a constant value 127 

of 15.343 to transform the SIF to the GPP (see Sect. 2.4.1). Monthly meteorological data, including the air 128 

temperature (Tair) from the ERA5-Land dataset (Zhao et al., 2020), vapor pressure deficit (VPD) from ERA-129 

Interim (Yuan et al., 2019), and downward shortwave solar radiation (SW) provided by the Breathing Earth 130 

System Simulator (BESS; Ryu et al., 2018), were used to calculate the Michaelis–Menton constant for 131 

carboxylase (𝐾𝐶), the Michaelis–Menton constant for oxygenase (𝐾0), the CO2 compensation point (ᴦ*), dark 132 

respiration (𝑅𝑑), and thus to calculate the 𝐴𝑛 parameter according to the equations in Table S4 (see the 133 

Supplement). All datasets were collected and harmonized to a spatial resolution of 0.125°. Further details 134 

regarding the satellite and input data are provided in Table 1. 135 

Table 1. Data sources for mapping the Vc,max25 of young leaves across tropical and subtropical 136 

broadleaved evergreen forests 137 

Data name and Abbr. Source Usage Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Temperature (Tair) ERA5-Land Calculate the 

KC, 𝐾0 , ᴦ*, 

and 𝑅𝑑  for An 

0.1° × 0.1° Monthly 2001.1-2018.12 

Shortwave solar radiation 

(SW) 

BESS Calculate the 

Je for An 

0.05° × 0.05° Monthly 2001.1-2018.12 

Vapor pressure deficit 

(VPD) 

ERA5-Land Calculate the 

𝐶𝑖 for An 

0.1° × 0.1° Monthly 2001.1-2018.12 

Sun induced chlorophyll 

fluorescence (RTSIF) 

TROPOMI SIF RTSIF-

derived GPP 

0.05° × 0.05° Monthly 2001.1-2018.12 

Gross primary production 

retrieved from OCO-2 Solar 

induced chlorophyll 

fluorescence (GOSIF) 

GOSIF 

 

GOSIF-

derived GPP  

0.05° ×0.05° Monthly 2001.1-2018.12 

Gross primary production 

from eddy covariance flux 

tower measurements 

(FLUXCOM) 

FLUXCOM 

 

FLUXCOM-

derived GPP 

 

0.5° × 0.5° Monthly 2001.1-2013.12 

Leaf-age-dependent leaf 

area index 

seasonality product (Lad-

LAI) 

Yang et al., 2023 Dissolved 

Vc,max25 from 

GOSIF-

derived GPP 

0.25° × 0.25° Monthly 2001.1-2018.12 

 138 

2.3 Data for validating the young leaves Vc,max25 139 

The Vc,max25 of the young and mean leaves age from in situ observations were collected to validate the 140 

Vc,max25 seasonality simulated from RTSIF-derived GPP by the proposed model (Table S1). Monthly young 141 

leaves and mean leaves age Vc,max25 observations occurred between August and December 2012 at the 142 

Santarem Primary Forest Ecosystem Research Station (BR-Sa1) sites (Albert et al., 2018). The annual mean 143 

leaves age Vc,max25 observations were acquired over 12 months during the period of 2004 to 2016 at the 144 
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Guyaflux Forest Ecosystem Research Station (GF-Guy) sites (Wang et al., 2022) and from 2003 to 2009 at 145 

the Dinghushan Forest Ecosystem Research Station (CN-Din) sites (https://fluxnet.org/data/fluxnet2015-146 

dataset/), and in November 2012 at the Mbam–Djerem National Park 3 (MDJ-03) sites (Ishida et al., 2015). 147 

The data regarding the young leaves and mean leaves age Vc,max25 for the BR-Sa1 site were obtained directly 148 

from the literature, whereas the remaining three sites were sourced solely through existing literature, 149 

providing only the mean leaves age Vc,max25 for each. To evaluate the simulated young leaves Vc,max25, the 150 

dissolved method (see Sect. 2.5.1) was employed to compute the young leaves Vc,max25 as the true values in 151 

accordance with the Lad-LAI product (Yang et al., 2023). A monthly leaf-age-dependent leaf area index 152 

product (referred to as Lad-LAI) at 0.25° spatial resolution over the continental scale during 2001-2018, 153 

developed by Yang et al. (2023), was used to derive Vc,max25 through the dissolved method (see Sect. 2.5.1) 154 

from the GOSIF-derived GPP, with the aim of evaluating the efficiency and reliability of the newly proposed 155 

methodology. Furthermore, Gross primary production retrieved from OCO-2 Solar induced chlorophyll 156 

fluorescence (referred to as GOSIF-derived GPP) data for the period spanning from 2001 to 2018, with a 157 

resolution of 0.05°, and Gross primary production from eddy covariance flux tower measurements (referred 158 

to as FLUXCOM-derived GPP) data for the period between 2001 and 2013, with a resolution of 0.5°, were 159 

also used to test the uncertainty of the proposed model for the simulation of monthly gridded young leaf 160 

Vc,max25 (Table 1). 161 

 162 

2.4 Methods for simulating the young leaves Vc,max25 163 

Fig. 2 shows the practical procedures applied to produce the seasonal dynamic product of the young leaf 164 

Vcmax,25. The ‘leaf demographic-identical (LDO)’ hypothesis proposes that the leaf cohorts can be classified 165 

into three categories on the basis of their growth, development and lifespan: young leaf (less than 60 days), 166 

mature leaf (between 60 days and 180 days), and old leaf (greater than 180 days) (Wu et al., 2017). To ensure 167 

comparability between the observations and simulations and simplify the calculations, we categorized the 168 

leaf area index (LAI) and the corresponding net CO2 assimilation rate (𝐴𝑛) into two groups based on leaf 169 

age: those with a leaf age greater than 180 days were considered ‘old,’ and those with a leaf age less than 180 170 

days were considered ‘young’ (Chen et al., 2019). Since the total GPP of the leaf cohort remained constant 171 

and the leaf cohorts were composed of leaves of different ages, we calculated the total GPP as a linear sum 172 

of the GPP of each leaf age cohort. The total GPP was simulated using the FvCB photochemical model by 173 

combining the LAI groups (young leaf LAI_Y vs. old leaf LAI_O; Equation 1) and the corresponding net 174 

assimilation rates of CO2 (young and mature An_Y vs. old leaf An_O; Equation 1) (Farquhar et al., 1980). 175 

𝐿𝐴𝐼_𝑌 × 𝐴𝑛_𝑌 + 𝐿𝐴𝐼_𝑂 × 𝐴𝑛_𝑂 = 𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙                (1) 176 

where 𝐿𝐴𝐼_𝑌 represents the LAI of young leaves (<180 days) and 𝐿𝐴𝐼_𝑂 represents the LAI of old leaves 177 

(>180 days). 𝐴𝑛𝑌 and 𝐴𝑛𝑂 represent the net CO2 assimilation rates of young and old leaves, respectively. 178 

The sum of 𝐿𝐴𝐼_𝑌 and 𝐿𝐴𝐼_𝑂 was set as the total canopy LAI. 𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙refers to the total gross primary 179 

production of the canopy. 180 
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 181 

Figure 2. Procedures for mapping the Vc,max25 of young leaves using a neighbor-based approach. 182 

The gridded GPP data over the whole TEFs were derived from SIF (denoted as RTSIF-derived GPP) 183 

using a linear SIF–GPP regression model (see Sect. 2.4.1), which was established based on in situ GPP from 184 

76 eddy covariance (EC) sites (Chen et al., 2022). The majority of the tropical and subtropical TEFs retain 185 

leaves year-round, and their total LAI shows marginally small spatial and seasonal changes (Wu et al., 2016; 186 

Fig. S2). Therefore, previous modeling studies have assumed a constant value for the total LAI in tropical 187 

and subtropical TEFs (Cramer et al., 2001; Arora and Boer, 2005; De Weirdt et al., 2012). Based on this, we 188 

collected observed seasonal LAI dynamics in tropical and subtropical TEFs from previously published 189 

literature, which showed a constant value of LAI at around 6.0 (Fig. S2; Table S3). Consequently, in this 190 

study, we streamlined the data to assume that the seasonal LAI was broadly equivalent to 6.0 in tropical and 191 

subtropical TEFs. This assumption was also found to be reasonable in the region of the TEFs by Yang et al. 192 

(2023). The 𝐿𝐴𝐼_𝑂 is equal to 6 − 𝐿𝐴𝐼_𝑌. The Vc,max25 values for old cohorts were set to 20 µmol m−2 s−1 193 

according to previous ground-based observations (Chen et al., 2019; Zhou et al., 2015) in our method The 194 

𝐴𝑛_𝑂 can be calculated according to the FvCB biochemical model (Farquhar et al., 1980; Bernacchi et al., 195 

2003; see Sect. 2.4.2). 𝐴𝑛_𝑌 can be expressed as the function of Vc,max25 for young leaves (see Sect. 2.4.2). 196 

Consequently, only 𝐿𝐴𝐼_𝑌  and Vc,max25 of young leaves remains as the final parameters to be solved in 197 

Equation 1.  198 

The model's complexity is evident due to the two parameters that needed to be solved. To overcome the 199 

challenge of the model calculation, we assumed that the four adjacent pixel points had homogeneous plant 200 

functional types (PFTs) and had consistent leaf age cohorts. The LAI and Vc,max25 of young leaves were 201 

estimated using nonlinear least squares and constraints on the basis of the GPP values with the four 202 

neighboring pixels, according to Equation 1. The input gridded dataset consisted of the GPP obtained from 203 

the RTSIF and climatic data such as Tair, VPD and SW, and the spatial resolution of these data was 204 

homogeneously resampled to 0.125°, resulting in a spatial resolution of 0.25° for the map of the output young 205 

leaf Vc,max25. We further validated the robustness and reliability of the neighborhood pixel method by scaling 206 
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the numbers of the neighborhood pixels, yielding a lower spatial resolution version, Vc,max25 at 0.5°. In the 207 

optimization process, an mean Vc,max25 value was determined by assuming that the leaf cohort was completely 208 

young. A reasonable adjustment for the young leaf Vc,max25 value was then determined based on previously 209 

published literature (Chen et al., 2022; Yang et al., 2023) and the initial value. Importantly, the difference 210 

between the finely optimized young leaf Vc,max25 value and the initial value could often be significant and 211 

outside the margin of error. Therefore, an appropriate adjustment for the young leaf Vc,max25 value needs to be 212 

carefully determined (He et al., 2019). All analyses were performed using MATLAB (R2 version). 213 

 214 

2.4.1 Calculating the GPP (RTSIF-derived GPP) from TROPOMI SIF 215 

SIF is a widely used proxy for canopy photosynthesis (Yang et al., 2015; Dechant et al., 2020). Here, 216 

we used a long-term reconstructed TROPOMI SIF dataset (RTSIF; Chen et al., 2022) to estimate GPP 217 

seasonality. Previous analyses showed that RTSIF was strongly linearly correlated to eddy covariance (EC) 218 

GPP and used 15.343 as a transformation coefficient to convert RTSIF to GPP (Chen et al., 2022). We 219 

collected seasonal GPP data observed at four EC sites from the FLUXNET2015 tier 1 dataset (Table S2; 220 

Pastorello et al., 2020) and validated the Chen et al. (2022) simple SIF–GPP relationship (Fig. S1 in the 221 

Supplement). Results confirmed the robustness of the Chen et al. (2022) simple SIF–GPP relationship for 222 

estimating the GPP seasonality in tropical and subtropical TEFs (R>0.49). Despite the potential 223 

overestimation (Fig. S1f) or underestimation (Fig. S1h) of the magnitudes, the RTSIF-derived GPP mostly 224 

captured the seasonality of the EC GPP at all four sites (dphase < 0.29). 225 

 226 

2.4.2 Calculating the net CO2 assimilation rate 227 

The net CO2 assimilation rate is a significant parameter characterizing the photosynthetic rate. 228 

According to Farquhar’s (1980) biochemical model (FvCB), the net CO2 assimilation rate (An) depends on 229 

the most limiting conditions for photosynthesis (RuBisCO saturation Ac, RuBP saturation Aj, or TPU 230 

saturation Ap) and the intensity of dark respiration (Rd, Bernacchi et al., 2013). The net CO2 assimilation rate 231 

(either An_Y or An_O) can be expressed by the following equation: 232 

𝐴𝑛 = min(𝐴𝑐 , 𝐴𝑗 , 𝐴𝑝) − 𝑅𝑑                            (2) 233 

(1) Calculation of Ac 234 

When the CO2 pressure is low (Ci<300 μmol mol−1), the net photosynthesis rate is mainly constrained 235 

by the activity and quantity of the carboxylase RuBisCO. The Rubisco-limited photosynthetic rate Ac can be 236 

calculated using the following equation under a limited carboxylation rate: 237 

               𝐴𝑐 = 𝑉𝑐max ×
𝐶𝑖−𝛤∗

𝐶𝑖+𝐾𝑐×(1+
𝑂

𝐾0
)
                             (3) 238 

where 𝛤∗represents the CO2 compensation point and 𝐶𝑖 is the intercellular CO2 pressure. 𝐾𝑐, 𝐾0, 𝑂, and 239 

𝛤∗  are estimated based on the leaf temperature using Equation 4 to calculate their values at the given 240 

temperature, which is used to convert from their values at 25°. 241 

𝑃 = 𝑃25 × 𝑒
(𝑇𝑘−298.15)×𝛥𝐻𝑝

𝑟×𝑇𝑘×298.15                               (4) 242 

where 𝑃 is the parameter at each temperature that varies with temperature, including the Michaelis constant 243 

for O2 ( 𝐾0 ), the Michaelis constant for CO2 ( 𝐾0 ), the intercellular concentration ( 𝑂 ) and the CO2 244 

compensation point (𝛤∗).𝑃25denotes the constant temperature dependence parameter at 25°C (Bernacchi et 245 

al., 2001); specifically, Kc, K0, T and O at 25°C are equal to 404.9 μmol mol-1, 278.4 mmol mol-1, 42.75 μmol 246 

mol-1 and 210 mmol mol-1, respectively. 𝛥𝐻𝑝is the activation energy, which varies with the temperature and 247 

parameters. 𝑟 is the standard gas constant (8.314 J mol-1 K-). 𝑇𝑘 is the leaf temperature (unit: Kelvin). 248 

Using the stomatal conductance model, the internal CO2 concentration (Ci, Equation 5) was estimated 249 

to depend on the atmospheric CO2 concentration instead of the ambient relative moisture (Xu et al. 2017; Lin 250 
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et al., 2015; Medlyn et al., 2011). 251 

𝐶𝑖 = 380 × (1 −
1

1.6×(1+
3.77

√𝑉𝑃𝐷
)
)                          (5) 252 

where 𝐶𝑖 represents the internal CO2 concentration and 𝑉𝑃𝐷 denotes the vapor pressure deficit data in hPa. 253 

(2) Calculation of Aj 254 

When the concentration of CO2 is high, leaf photosynthesis is constrained by RuBP regeneration. The 255 

photosynthetic rate (Aj) is then limited by electron transport and calculated using the following equation: 256 

𝐴𝑗 = 𝐽 ×
𝐶𝑖-𝛤

*

4×（𝐶𝑖+2×𝛤*）
                              (6) 257 

where 𝐽 is the electron transport rate for leaf photosynthesis limited by light. It is a quadratic function of the 258 

full electron transfer rate (𝐽𝑒) and maximum electron transfer rate (𝐽max) (Bernacchi et al., 2013; Luo et al., 259 

2001). The maximum electron transport rate (Jmax), the maximum carboxylation rate (Vc,max25), and the CO2 260 

compensation point in the absence of mitochondrial respiration (ᴦ*) were used to determine the Michaels–261 

Menten constants for oxygenation and carboxylase. For the detailed calculation process, refer to Equations 262 

7-9. 263 

𝐽 =
𝐽𝑒+𝐽max−√(𝐽𝑒+𝐽max)2−4×𝐽𝑒×𝐽max×𝜃

2×𝜃
                        (7) 264 

𝐽𝑒 = 𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙 × 𝜕 × 𝜑 × 𝜅                           (8) 265 

𝐽max = 𝐽max,25 × 𝑒((
25−𝑇𝑜𝑝𝑡

𝛷
)2-(

𝑇𝑘−273.15−𝑇𝑜𝑝𝑡

𝛷
)
2)

                     (9) 266 

where 𝐽max denotes the maximum electron transfer rate at a given temperature and varies with temperature. 267 
𝐽max,25 is the maximum electron transfer rate at 25°C, is usually assigned 1.67×Vc,max25 in TEFs. 𝑇𝑜𝑝𝑡 and 268 

𝑇𝑎𝑖𝑟  are the optimum temperature for electron transfer and the leaf temperature, respectively. 𝐽𝑒  is a 269 
function of canopy photosynthetically active radiation (𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙) and can be calculated by inputting SW and 270 
LAI; for details, refer to Weiss and Norman (1985) and Ryu et al. (2018). 𝜃, 𝜕, 𝜑, and 𝛷 are constants 271 
and equal to 0.7, 0.85, 0.5, and 0.85, respectively (Xu et al., 2017; Yang et al., 2023). 𝜅 is a function of the 272 
optimal temperature, which is the maximum quantum efficiency of PSII photochemistry. 273 

(3) Calculation of Ap 274 

The rate of photosynthesis is limited by the export of triose phosphate. Ap represents the photosynthetic 275 

capacity to export or utilize the photosynthetic products for the different LAI cohorts, as determined by 276 

multiple on-site observations. 277 

𝐴𝑝 = 𝑐 × 𝑉𝑐,𝑚𝑎𝑥25                                 (10) 278 

The ratio of the interior foliar CO2 concentration to the environmental CO2 concentration was fixed at 279 

0.5 for C3 species and 0.7 for C4 species based on previous investigations. (Fabre et al., 2019; McClain et 280 

al., 2019; Yang et al., 2016). 281 

 282 

2.5 Methods for evaluating the simulated young leaves Vc,max25 283 

This study assessed the proposed algorithms in three ways: (1) monthly observed Vc,max25 through in situ 284 

measurements, which were collected from the literature; (2) yearly dissolved Vc,max25 from the GOSIF-derived 285 

GPP; and (3) monthly Lad-LAI product dependent on new leaf age covering the entire TEF region; these 286 

were obtained from the RTSIF product by Yang et al. (2023). However, the in situ Vc,max25 of young leaves 287 

remains an unfulfilled need, only one site (BR-Sa1; see Sect. 2.3) of annual monthly young leaves Vc,max25 is 288 

available. In order to compensate for the lack of ground-based validation, three sites (GF-Guy, MDJ-03, CN-289 

Din) of the seasonality Vc,max25 of mean leaves age were also collected and calculated the young leaves Vc,max25 290 

using the dissolved method (see Sect. 2.5.1) based on the Lad-LAI product (Yang et al., 2023). To evaluate 291 

the efficiency and reliability of the newly proposed methodology, a comparison was also conducted between 292 

the grid young leaves Vc,max25 simulated from RTSIF-derived GPP by using the newly proposed method and 293 

that dissolved from GOSIF-derived GPP and the Lad-LAI product by using dissolved method. To investigate 294 

the reliability of the neighborhood-based subdivision technique, we conducted a comparative analysis of the 295 
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young leaves Vc,max25 derived from RTSIF-derived GPP using 2×2 (0.25° resolution) and 4×4 (0.5°resolution) 296 

neighboring pixels. To assess the uncertainties stemming from the estimation of gross primary productivity 297 

(GPP), we incorporated two additional GPP products, GOSIF-derived GPP and FLUXCOM GPP (Jung et al., 298 

2019; Yang et al., 2023), along with the original RTSIF-derived GPP, resulting in three distinct versions of 299 

the young leaves Vc,max25 products. 300 

 301 

2.5.1 Dissolved method for evaluating the young leaves Vc,max25 302 

The total GPP can be expressed as the sum of the GPP of the old and young leaf age cohorts. The GPP 303 

of each leaf age cohort is a function of the corresponding LAI cohort and net CO₂ assimilation rate. In 304 

accordance with related studies, the Vc,max25 of old leaves is presumed to be a constant value (Chen et al., 305 

2020). When the LAI of different leaf ages is known, only the Vc,max25 of the young leaves remains unknown 306 

in Equation 1. The value of the Vc,max25 of the young leaves can be determined by solving the aforementioned 307 

Equation 1. This method involves dividing GPP into old and young GPP according to leaf age, with the 308 

Vc,max25 of young leaves being directly solved by using the Lad-LAI product, hence the term 'dissolved 309 

method'. At present, there is a lack of available data regarding the ground Vc,max25 of different leaf ages. The 310 

dissolved method is employed to validate the reasonableness of the proposed algorithm. 311 

 312 

2.5.2 K-means method for classification of the young leaves Vc,max25 313 

We analyzed the spatial patterns of Vc,max25 across TEFs using the K-means clustering analysis. K-means 314 

algorithm is an iterative algorithm that tries to partition the dataset into K predefined distinct non-overlapping 315 

subgroups (clusters) where each data point belongs to only one group. It tries to make the intra-cluster data 316 

points as similar as possible while also keeping the clusters as different (far) as possible. It assigns data points 317 

to a cluster such that the sum of the squared distance between the data points and the cluster’s centroid 318 

(arithmetic mean of all the data points that belong to that cluster) is at the minimum. The less variation we 319 

have within clusters, the more homogeneous (similar) the data points are within the same cluster. The way k-320 

means algorithm works is as follows: 321 

(1) Specify number of clusters K. 322 

(2) Initialize centroids by first shuffling the dataset and then randomly selecting K data points for the 323 

centroids without replacement. 324 

(3) Keep iterating until there is no change to the centroids. i.e. assignment of data points to clusters isn’t 325 

changing. 326 

(4) Compute the sum of the squared distance between data points and all centroids. 327 

(5) Assign each data point to the closest cluster (centroid). 328 

(6) Compute the centroids for the clusters by taking the average of the all data points that belong to each 329 

cluster. 330 

 331 

2.5.3 Precision evaluation index 332 

Both the root mean square error (RMSE, Equation 11) and Pearson's correlation coefficient (R, 333 

Equation 12) were employed to evaluate the model capabilities. 334 

𝑅𝑀𝑆𝐸 = √∑ (𝑉𝑖−𝑈𝑖)2𝑁

𝑖=1

𝑁
                             (11) 335 

𝑅 =
∑ (𝑉𝑖−𝑉)(𝑈𝑖−�̅�)

𝑁

𝑖=1

√∑ (𝑉𝑖−𝑉)2𝑁

𝑖=1
√∑ (𝑈𝑖−�̅�)2𝑁

𝑖=1

                         (12) 336 
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𝑆𝐷𝑆 =  √
1

𝑁
∑ (𝑉𝑖 − �̅�)2𝑛

𝑖=1                             (13) 337 

𝑆𝐷𝑚 =  √
1

𝑁
∑ (𝑈𝑖 − �̅�)2𝑛

𝑖=1                             (14) 338 

𝐿𝐶𝑆 =  2𝑆𝐷𝑆𝑆𝐷𝑚(1 − 𝑅)                            (15) 339 

where 𝑁 is the total point extracted from the Vc,max25 products simulated  from RTSIF-derived GPP; 𝑉𝑖and 340 

𝑈𝑖 represent the monthly simulated and observed in situ measurements Vc,max25, respectively; and�̅�and�̅� 341 

are the mean values of the simulated and observed in situ measurements Vc,max25. Moreover, the continental 342 

Vc,max25 simulated from the proposed model was compared against that the dissolved from GOSIF-derived 343 

GPP and Lad-LAI over the TEF regions. 𝑆𝐷𝑆  is standard deviation of the simulation, and 𝑆𝐷𝑚  is the 344 

standard deviation of the measurement. And the lack of correlation weighted by the standard deviations 345 

(phase-related difference; dphase; dphase = LCS).    346 

 347 

3. Results 348 

3.1 Validation of the gridded Vc,max25 seasonality of young leaves using in situ observations 349 

The seasonality of simulated mean Vc,max25 of all canopy leaves and Vc,max25 of young leaves was 350 

evaluated with in situ measurements at 4 sites: CN-Din site in southern China (Latitude: 23.170°N; Longitude: 351 

112.540°E), MDJ-03 site in Congo (Latitude: 5.984°S; Longitude: 12.869°E), and BR-Sa1 (Latitude: 352 

2.8567°S; Longitude: 54.958°W) and GF-Guy (Latitude: 5.278°N ; Longitude: 52.925°W ) sites in southern 353 

America. Overall, the estimated mean Vc,max25 of all canopy leaves (black line) ranged from 20 μmol m-2 s-1 354 

to 60 μmol m-2 s-1, and their seasonal fluctuations agreed well with the in situ mean Vc,max25 (red dots) (Fig. 355 

3). In contrast, Vc,max25 (green line) of the young leaf cohorts (green line) exhibited higher values compared 356 

with those of all canopy leaves, ranging from between 40 μmol m-2 s-1 and 80 μmol m-2 s-1. This finding is 357 

consistent with previous studies that young leaves were more photosynthetically effective than old leaves 358 

(Urban et al., 2008; Albert et al., 2018; Menezes et al., 2022). Specifically, our simulations can capture well 359 

the various seasonal patterns of Vc,max25 across different sites. At the BR-Sa1 site, the estimates were 360 

correlated well with the observed mean Vc,max25 for all (R=0.85) and young leaves (R=0.84), which both 361 

increased during the dry season (approximately between June December) (Fig. 3a, 3b). At the GF-Guy site, 362 

in situ mean Vc,max25 of all canopy leaves showed considerable seasonality, while Vc,max25 of young leaves 363 

remain much stable (Fig. 3c). Our estimates also performed well in simulating the Vc,max25 of all canopy leaves 364 

(R=0.95) and that of young leaves (R=0.66) (Fig. 3d). In contrast, at the Din site in subtropical Asia, both 365 

Vc,max25 for all canopy leaves and young leaves increased during the wet-season period, with the highest 366 

precipitation occurring in June or July (Fig. 3e). This is similar in the Congo-MDJ3 site, where both Vcmax,25 367 

for all canopy leaves and young leaves also increased during the wet-season period but with larger seasonal 368 

variations. Our model showed the best simulations of Vc,max25 of young leaves in Din site (all canopy leaves: 369 

R=0.84; young leaves: 0.95). Nevertheless, many more long-term in situ measurements are needed to 370 

determine the reliability of these time series fluctuations.  371 

Then, we analyzed the spatial patterns of Vc,max25 across TEFs using the K-means clustering analysis. 372 

Results showed that Vc,max25 for young leaf cohorts in tropical forests had evident seasonal dynamics, bringing 373 

influences on canopy photosynthesis. Fig. S3 shows the seasonal fluctuations in Vc,max25 for the young leaves 374 

in ten individual regions, as clustered using K-means analysis. In the middle and southern regions of the 375 

Amazon, the young leaf Vc,max25 decreased with the onset of the wet season (approximately February) and 376 

conversely increased with the onset of the rainy season (approximately June). In contrast, in subtropical Asia, 377 

the young leaf Vc,max25 increased during the wet season, peaking in June or July when rainfall was highest. 378 

Near the equator, the young Vc,max25 showed a bimodal seasonality with very slight variations.  379 
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 380 

Figure 3. Validations of simulated seasonal Vc,max25 for all canopy leaves and young leaves with in situ 381 

observations. The green lines and green dots are the seasonal young leaf Vc,max25 simulated from RTSIF 382 

derived GPP by the proposed method. The black line and red dots are the mean leaf age Vc,max25 values from 383 

the simulations and in situ observations, respectively. Simulated Vc,max25 denoted as the young leaf Vc,max25 384 

simulated from RTSIF-derived GPP by using the new proposed method. Mean Vc,max25 denoted as the mean 385 

leaves age Vc,max25. 386 

 387 

3.2 Validation of the young leaves Vc,max25 simulated from RTSIF-derived GPP against that 388 

dissolved from GOSIF-derived GPP 389 

The Vc,max25 of young leaves simulated from RTSIF-derived GPP demonstrated significantly correlations 390 

(R ranges from 0.512 to 0.870) with those dissolved from GOSIF-derived GPP (Fig. 4a-j). However, notable 391 

discrepancies remained between these two independent Vc,max25 estimates (Fig. 5). Statistically, the seasonally 392 

young leaf Vc,max25 simulated from RTSIF-derived GPP exhibited strong correlations with those dissolved 393 

from the GOSIF-derived GPP (R>0.80) across 86.34% of the entire TEFs area, with a mean correlation 394 

coefficient of 0.87 (Fig. 5a-c). And the RMSE remained below 11.591 for 91.68% of the TEFs (Fig. 4d-f). 395 

Nevertheless, this correlation varies across sub-regions. The K-means spatial clustering analysis showed that 396 

Vc,max25 of young leaves simulated from RTSIF-derived GPP was more strongly correlated with the those 397 

estimated from the GOSIF-derived GPP in the low-latitudes (Amazon R1 R=0. 903; Amazon R2 R=0.935; 398 

Amazon R4 R=0.869; Amazon R5 R=0.767; Congo R6 R=0.905; Congo R7 R=0.965; Asia R8 R=0.860; 399 

Asia R9 R=0.841) in comparison to those in the higher latitudes (Amazon R3 R=0.602; Amazon R10 400 

R=0.499). The RMSE results also showed better performance in capturing the seasonality of Vc,max25 in the 401 

low-latitude regions (Amazon R1 RMSE=1.779; Amazon R2 RMSE=2.169; Amazon R4 RMSE=4.668; 402 

Congo R6 RMSE=3. 262; Congo R7 RMSE=4.726; Asia R8 RMSE=3.378; Asia R9 RMSE=5.861; Fig. S4) 403 

compared to those in the regions further from the equator at higher latitudes (Amazon R5 RMSE = 14.845; 404 

Amazon R10 RMSE = 6.918; Fig. S5). However, more in situ measurements are needed to refine and validate 405 

the simulated Vc,max25 product. Despite these obstacles, the present product provides an improvement from 406 

the current state of the art and can be immediately applied in parameterizing terrestrial ecosystem models. 407 
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 408 

Figure 4. Comparisons of the young leaves Vc,max25 simulated from RTSIF-derived GPP against that dissolved 409 

from GOSIF-derived GPP 410 

 411 

 412 

Figure 5. The root mean square error (RMSE) and correlation coefficient (R) between the young leaves 413 

Vc,max25 derived from RTSIF-derived GPP and that dissolved from GOSIF-derived GPP. 414 

 415 
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3.3 Comparison of the seasonal Vc,max25 of young leaves with the leaf age product  416 

Field measurements revealed different seasonal patterns of young leaf Vc,max25 across the TEFs. However, 417 

due to the low spatial coverage of in situ observation sites, it still remains challenging to comprehensively 418 

and directly assess the their variations. Here, the K-means clustering analysis was performed on the simulated 419 

Vc,max25 maps to investigate its geospatial coherency in comparison with a gridded leaf age product developed 420 

by Yang et al. (2023).  421 

The geospatial distribution of the young leaf Vc,max25 products clustered based on the satellite vegetation 422 

signals (Fig. 6a-c) was closely matched those of climatic factors classified by the K-means clustering analysis 423 

(Fig. 6d-f) analyzed by Chen et al. (2021). These distributions were generally comparable to the spatial 424 

patterns of the Lad-LAI products clustered based on the endogenous climate variables presented earlier in 425 

the maps from Yang et al. (2021) (Fig. 6g-i). All these results exhibit similar spatial clustering patterns. In 426 

the middle (sub-region R2) and northern (sub-region R3) Amazon (Fig. 7a), the seasonal variation in the 427 

young leaf Vc,max25 (Fig. 8b, c) was consistent with that of the BR-Sa1 and GF-Guy sites, where young leaves 428 

increase during the dry seasons. Moreover, the seasonality of the young leaf Vc,max25 in subtropical Asia (Fig. 429 

8f) was similar to that of Din, where young leaves conversely increase during the wet seasons. The young 430 

leaf Vc,max25 peaked in July in sub-region R10, which was located between sub-regions R8 and R9, where the 431 

young leaf Vc,max25 exhibited a bidirectional phenology (Fig. 8j). The other four sub-regions (R1, R2, R7 and 432 

R8) were located near the equator. Unlike sub-regions R1, R2, R7 and R8 that were far from the equator, the 433 

young leaf Vc,max25 clustered near the equator showed less seasonal variations. In particular, in these sub-434 

regions close to the equator, the seasonal pattern of the young leaf Vc,max25 was bidirectional. The first peak 435 

occurred in approximately March, while the second peak occurred in August (Fig. 8a, d, e, g). These results 436 

were in good agreement with previous studies (Li et al., 2021) that reported a single peak at high latitudes 437 

and bidirectional seasonality at low latitudes. 438 

 439 
Figure 6. Comparison of sub-regions of the young leaf Vc,max25 (a-c) with those of climatic factors classified 440 

by the K-means clustering analysis (d-f) analyzed by Chen et al. (2021), and those of the Leaf-age-dependent 441 

leaf area index seasonality product (Lad-LAI) (g-i) developed by Yang et al. (2023). 442 
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 443 

 444 

Figure 7. Spatial maps of the correlation coefficient (R) between the monthly simulated Vc,max25 and the Leaf-445 

age-dependent leaf area index seasonality product (Lad-LAI) developed by Yang et al. (2023). 446 

 447 

 448 

Figure 8. Seasonality of the simulated Vc,max25 of young leaves in comparison with the Leaf-age-dependent 449 

leaf area index seasonality product (Lad-LAI) developed by Yang et al. (2023). 450 

 451 

3.4 Partial correlations between the seasonal Vc,max25 of young leaves and individual 452 

climatic factors 453 

To assess potential impacts of the climatic seasonality on Vc,max25 of young leaves, we also conducted 454 

spatial clustering analyses on climate factors such as vapor pressure deficit(VPD), air temperature(Tair), and 455 

downward shortwave solar radiation(SW) (Fig. 8d-f), which were found to be key drivers of leaf phenology 456 

in TEFs (Li et al. 2021; Yang et al., 2021; 2023). Notably, the spatial patterns of the young leaf Vcmax,25 457 

generated from satellite-derived vegetation signals (Fig. 8a-c), closely matched the patterns derived from 458 

independent climate variables such as Tair, VPD and SW (see Fig. 8). There was a notable positive correlation 459 

between the SW and Vc,max25 across most parts of TEFs (Fig. 9). The correlation coefficients exceeded 0.34 460 

in all cases except in the Amazon sub-region R4, where the correlation coefficient was only 0.167. These 461 

results highlight the significant role of SW in influencing the canopy photosynthesis in TEF. Although the 462 

seasonal fluctuations in temperature were less distinct (Fig. 10), possibly due to minor variations in 463 
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temperature gradients, a substantial positive correlation was observed between the temperature and young 464 

leaf Vc,max25 (Fig. 9). This correlation surpassed 0.608 in the Amazon sub-regions R1-R3 and R5 and the Asia 465 

sub-regions R9 and R10 (Fig. S6). Conversely, a negative correlation, with a mean correlation coefficient of 466 

-0.64, was noted in the sub-region R6 of the Congo (Fig. S6). These findings were in agreement with earlier 467 

investigations and indicated that air temperature significantly impacted the seasonal dynamics of Vc,max25 468 

(Zhou et al., 2015). The relationship between the young leaf Vc,max25 and VPD considerably varied across the 469 

different sub-regions (Fig. 8), indicating complex influences of the VPD on canopy photosynthesis in TEFs. 470 

This variability was mainly due to the seasonal variations in canopy leaf age, which aged during the rainy 471 

season and became rejuvenated during dry seasons (Li et al., 2021; Yang et al., 2021; 2023). As a result, the 472 

seasonality of leaf photosynthetic capacity tended to show an inverse trend to the seasonality of the leaf age, 473 

as expected (Chen et al., 2020).  474 

 475 
Figure 9. Spatial maps of correlation coefficient (R) between the SIF-simulated monthly Vc,max25 and climatic 476 

and phenological patterns. a, d and g are the spatial maps of correlation coefficient between Vc,max25 and vapor 477 

pressure deficit(VPD); b, e and h are the spatial maps of correlation coefficient between Vc,max25 and air 478 

temperature(Tair); c, f and i are the spatial maps of correlation coefficient between Vc,max25 and downward 479 

shortwave solar radiation(SW) 480 

 481 
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 482 
Figure 10. Seasonality of Vc,max25 of young leaves, air temperature(Tair), vapor pressure deficit(VPD) and 483 

downward shortwave solar radiation(SW) in the ten sub-regions classified using the K-means clustering 484 

analysis method. 485 

 486 

3.5 Testing potential uncertainties in the young leaves Vc,max25  487 

The seasonal variations in the young leaf Vc,max25 using 4×4 neighboring pixels were closely aligned 488 

with those observed in the 0.25° products utilizing a grid of 2×2 pixels (Fig. S7). Results showed a highly 489 

linear correlation between the simulated 0.25° resolution and 0.5°resolution consistent (R>0.995), with the 490 

root mean square error (RMSE) being maintained below 0.66 (Fig. 11). This evidence supported the concept 491 

that the neighbor-based decomposition approach was both robust and dependable for producing the Vc,max25 492 

products at various spatial resolutions. 493 

Three differentiated versions of the young leaves Vc,max25 products were produced from RTSIF-, GOSIF- 494 

and FLUXCOM-derived GPP at various spatial resolutions (Figs. S8-10). Despite minor differences, all these 495 

Vc,max25 products exhibited high spatial correlations (Fig. 12). Notably, all three products demonstrated 496 

remarkable similarities in the overall geographic patterns (R ranged from 0.87 to 0.963, P < 0.001) (Fig. 13). 497 

The seasonality of the simulated Vc,max25 from various GPP products aligned well across all the ten sub-498 

regions (Fig. 12). By comparing these datasets with the in situ observation sites, we found that the Vc,max25 499 

generated from RTSIF-derived GPP had the highest correlation and a minimal deviation against the in situ 500 

measurements, with R equal to 0.85 and RMSE equal to 13.69 (Fig. 13). Overall, all three versions of the 501 

young leaf Vc,max25 products demonstrated consistent seasonal variability and effectively performed across 502 

the ten sub-regions. 503 

 504 
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Figure 11. Scatter plots between the simulated Vc,max25 of young leaves simulated using the 2×2 (0.25° 505 

resolution) and 4×4 (0.5° resolution) neighboring pixels in the above-mentioned ten clustered sub-regions. 506 

 507 

 508 

Figure 12. Seasonality of the simulated young leaf Vc,max25 derived from RTSIF-, GOSIF- and FLUXCOM-509 

derived GPP in the above-mentioned ten clustered sub-regions. 510 

 511 

 512 

Figure 13. Comparison of RTSIF-derived Vc,max25 with GOSIF-derived Vc,max25 (left bottom panels); 513 

FLUXCOM-derived Vc,max25 with RTSIF-derived Vc,max25 (middle bottom panels); RTSIF-derived Vc,max25 514 

with FLUXCOM-derived Vc,max25 (left middle panels); and the three derived Vc,max25 with the in situ 515 

observations (diagonal panels). (a) Correlation coefficients (R); (b) Root mean square error (RMSE). 516 

 517 

4. Discussion 518 

Tropical forests, marked by no obvious seasonal shifts in greenness but distant variations in leaf age 519 

cohorts (Luo et al., 2021; Zhao et al., 2019; Walther et al., 2019), show distinct leaf phenology compared 520 

with temperate and boreal forests. The young leaves are the main leaf cohort to influence photosynthesis 521 
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(Oliveira et al., 2023; Sharma et al., 2017; Antwi-Boasiako et al., 2011), as previous studies showed that the 522 

photosynthesis rates decrease with leaf aging (Menezes et al., 2022; Wang et al., 2020). Thus, understanding 523 

the mechanism by which the leaf age influences photosynthesis is crucial for assessing plant growth, 524 

ecosystem primary productivity, and the carbon cycle in evergreen forests. (Albert et al., 2018). The leaf 525 

carboxylation capacity (Vc,max25) is crucial for estimating the photosynthetic CO2 absorption in tropical forests 526 

within ESMs. However, most ESMs currently adopt either a single static or an average annual value to 527 

represent the Vc,max25 for each plant functional type (Stocker et al., 2020; Spafford et al., 2023). This empirical 528 

practice causes uncertainties in tropical forest biomes, which are characterized by their extensive plant 529 

functional diversity (Echeverría-Londoño et al., 2018; Spicer et al., 2022) and variable photosynthetic 530 

capacity (Piao et al., 2019; Pinheiro et al., 2023). Additionally, Vcmax,25 for a certain plant species can also 531 

vary significantly with leaf aging, ambient growth temperatures, and the availability of water and nutrients 532 

(Stefanski et al., 2022 Lu et al., 2022; Crous et al., 2022;). Thus, seasonal variations in the photosynthesis in 533 

tropical evergreen forests are impacted by the turnover of old leaves with low Vc,max25 values and their 534 

replacement by new leaves with higher Vc,max25 values (Wang et al., 2021; Murphy et al., 2020; Abdul et al., 535 

2016). These findings highlight the importance of accurately quantifying the leaf age and integrating the leaf 536 

age information when estimating Vc,max25 to improve the modeling of the leaf CO2 assimilation in tropical 537 

forests. However, to the best of our knowledge, to date, no comprehensive continental-scale data are available 538 

on the leaf age-dependent Vc,max25 variations throughout tropical evergreen forests. This data gap remains 539 

because these variations cannot be adequately mapped by the limited field observations (Hakala et al., 2019) 540 

or reliably modeled by ESMs that depend on uncertain climatic variables (Brunner et al., 2021). These 541 

challenges prevent researchers worldwide from using remote sensing techniques and land surface models 542 

(LSMs) to accurately model the seasonality of large-scale photosynthesis (GPP) (Krause et al., 2022). 543 

In this study, we for the first time to provide the continental-scale monthly gridded Vcmax,25 of young 544 

leaves. Based on the newly developed Vc,max25 product. Additionally, the seasonality of the young leaf Vc,max25 545 

has been effectively evaluated at four locations—CN-Din site in southern China, MDJ-03 site in Congo, and 546 

BR-Sa1 and GF-Guy sites in southern America—using the precise, detailed records of the young leaf Vc,max25. 547 

To evaluate the reliability of the gridded young leaf Vcmax,25 across the entire TEFs, the seasonality of the 548 

young leaf Vc,max25 was also validated pixel by pixel using the dissolved method from the gridded GPP and 549 

the leaf age product developed by Yang et al. (2021). The results demonstrated a substantial variation in the 550 

Vc,max25 with leaf age, with observed fluctuations (ranging from 40 μmol m-2 s-1 to 90 μmol m-2 s-1) closely 551 

aligning with variations outlined for tropical and subtropical regions in current ESMs, as described by Rogers 552 

(2014). These results show the critical need for including age-dependent variations of the Vc,max25 in future 553 

ESM designs. Additionally, the Vc,max25 values derived from the combined leaves of these updated 554 

photosynthesis products can effectively capture the widespread greening of the canopy leaves during the dry 555 

season north of the equator. This represents a significant improvement in our capacity to promptly assess and 556 

potentially map the Vc,max25 with high spatial and temporal accuracy in tropical forests. The robustness of 557 

these new photosynthesis products has been supported through both direct and indirect assessments. 558 

Importantly, in equatorial regions characterized by high annual rainfall, no marked dry seasons typically 559 

occur. As a result, variations in the tree canopy phenology are subtler than those observed at higher latitudes 560 

(Yang et al., 2021). In these areas, Vc,max25 of the leaf cohorts display a bimodal phenology pattern with 561 

minimal seasonal fluctuation, a phenomenon that is effectively captured by the newly developed 562 

photosynthesis product. To convert the SIF data into GPP, a constant coefficient was used, and Vcmax,25 was 563 

assumed to be uniformly distributed across all tropical evergreen forests, potentially introducing further 564 

uncertainties. This assumption was reflected in the MSD assessment, where the bias component was 565 
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predominant, especially near the equator. Nevertheless, the impact of this on the seasonality of photosynthesis 566 

was minima; because the phase-dependent component of the RMSE remained relatively insignificant. 567 

The “leaf demographic-identical (LDO)” hypothesis categorizes the leaf cohorts into three distinct age 568 

classes: new leaves (from 1 to 60 days), mature leaves (from 60 to 180 days), and old leaves (larger than 180 569 

days), with corresponding mean Vc,max25 values as reported by Wu et al. (2016). To facilitate a more effective 570 

comparison between the observations and models, we categorized the leaves into two age groups. Leaf ages 571 

greater than 6 months are classified as a distinct old leaf class, as per Harris et al. (2007), while leaf ages less 572 

than 6 months are combined into a single young leaf class. Juliane et al. (2021) reported that the average 573 

Vc,max25 of mature plants (60-180 days) was the highest. However, the older age classes had values of 30.4 ± 574 

1.2 (234–612 days). The Vc,max25 of the young leaves was 23% greater than that of old leaves, with minimal 575 

fluctuations observed in the latter group. The link between the older leaves and Vc,max25 is less understood in 576 

TEFs due to limited field data (Chen et al., 2020). To address these simulation challenges, we defined Vc,max25 577 

for old leaves as a consistent static value; however, this could lead to inaccuracies in predicting 578 

photosynthetic performance. This approach affects the accurate depiction of Vc,max25 and GPP seasonality in 579 

ESMs (De Weirdt et al., 2012). Moreover, additional uncertainties stem from assumptions that neglect the 580 

spatial and temporal variations influenced by the plant functional type variability, which shifts with seasonal 581 

climate anomalies and varies within close proximity in diverse forest ecosystems. These generalizations 582 

could also contribute to inaccuracies in simulating seasonal variations in Vc,max25. Reflecting the inherent 583 

variability in photosynthetic behavior across ages, the data revealed two distinct responses: (1) some species, 584 

such as P. tomentosa and P. caimito, showed marked reductions in Vc,max25 as they aged, whereas (2) others, 585 

such as M. angularis and V. parviflora, maintained consistent Vc,max25 values after peaking. Juliane et al. (2021) 586 

reported a modest yet significant correlation between the Vc,max25 and leaf age due to these contrasting patterns. 587 

Variations in the photosynthetic capacity at the ecosystem level could be influenced by factors such as the 588 

composition of species and the presence and proportion of different functional groups of plants in the forest. 589 

In summary, we have presented a novel approach to develop a gridded dataset that incorporates leaf age 590 

sensitivity into the photosynthesis products for TEFs on a continental scale. Although some uncertainties 591 

remain, a monthly gridded young leaf Vc,max25 dataset is provided. This innovation facilitates the development 592 

of a comprehensive phenological modeling approach for all TEFs within ESMs, which are traditionally 593 

operated at coarser resolutions. These improvements substantially enhance our ability to monitor and 594 

mechanistically interpret the variations in the Vc,max25 of young leaf across various regions and periods, 595 

providing essential data for the parameterization and assessment of ESMs. Additionally, as remote sensing 596 

technologies continue to advance, we anticipate that the enhanced temporal and spatial resolution of RTSIF-597 

derived GPP will facilitate more accurate mapping of the photosynthesis products in the future. 598 

 599 

5. Data availability 600 

The 0.25 degree time-series Vc,max25 data from 2001-2018 is presented in this paper as the main dataset. 601 

We also provided another two versions of Vc,max25 generated from GOSIF-derived GPP and FLUXCOM GPP, 602 

respectively. The three datasets are available at https://doi.org/10.5281/zenodo.14807414 (Yang et al., 2025). 603 

These datasets are compressed in a GeoTiff format, with a spatial reference of WGS84. Each file in these 604 

datasets is named as follows: “Vcmax25_{GPP source}derived_{YYYYMM}.tif”. 605 

 606 

6. Conclusions 607 

This study for the first time to develop a monthly gridded dataset of Vc,max25 of young leaves from 2001 608 

to 2018 based on RTSIF data. The Vc,max25 of young leaves simulated from RTSIF-derived GPP was assessed 609 

against in situ observations of the monthly Vc,max25 records, the Vc,max25 product dissolved from the GOSIF-610 
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derived GPP, and the leaf age product Lad-LAI (Yang et al., 2023). Evaluations from these independent leaf-611 

age-related data demonstrated the reliability of the seasonal Vc,max25 simulations for the young leaf cohorts. 612 

Additionally, the Vc,max25 of young leaves varied across TEFs. In the middle and southern regions of the 613 

Amazon, the young leaf Vc,max25 decreased with the onset of the wet season (approximately February) and 614 

conversely increased with the onset of the rainy season (approximately June). In contrast, in subtropical Asia, 615 

the young leaf Vc,max25 increased during the wet season, peaking in June or July when rainfall was highest. 616 

Near the equator, the young Vc,max25 showed a bimodal seasonality with very slight variations. The Vc,max25 617 

products of young leaves can provide usuaful information to improve our understanding of how tropical and 618 

subtropical forests are adapting to ongoing climate change. and can be used to refine the phenology models 619 

incorporated into LSMs. 620 
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